

#sharing challenges and solutions in practice

Implementation of new freeze dryers in existing building infrastructure CSL Behring Marburg

Conference

Part of PharmaCongress – Düsseldorf/Neuss, 31 May–1 June 2022

Project description and background

- Case Study CSL Behring Challenges due to limited space in the existing building during construction phase
- The ILC-H69 (Increase Lyophilization capacity building H69) project involves the installation of two new freeze dryers with automatic vial loading system and connection to existing filling line.
- The special challenges of this project are the extremely limited space in the existing building and the continuation of filling operations during the construction phase.
- These were mastered with the use of new planning tools:
 - 3D Planning
 - Laser-scan
 - Virtual Reality visualization
 - Feasibility Study for large component intake

What we will present to you

- Introduction of CSL and CSL Marburg
- Initial situation and scenarios
- Initial steps of project & scenarios
- Favored scenario
- Goals & user requirements
- Floor plans, initial and final situation
- Project challenges
- Realization
- Insights, examples and videos
- Cooperation between Production and Project
- Conclusions and outlook
- Your questions and exchange of ideas

Supported by

Who is presenting to you? **Matthias Klein**

Value Stream Lead Packaging Marburg Member of Site Operations Leadership Team

Former positions within CSL and predecessors:

2010 – 2021	Director Filling & Visual Inspection H69
2004 – 2009	Director Quality Management Production
1999 – 2004	Director Facility Validation/Qualification
1997 – 1998	Senior Manager Quality Assurance CSL
1994 – 1996	Plant Engineering Hoechst-Schering Crop-Science
1991 – 1993	Plant Engineering Hoechst Holland NV
1989 – 1991	Engineering Hoechst AG Frankfurt

Background: Dipl.-Ing., M.Sc.

Automation & Control Technology, University Darmstadt

Who is presenting to you? Steffen Mörler

Associate Director Project Excellence

Former positions within CSL and predecessors:

2020 - 2021Senior Project Manager, CSL Behring

2019 - 2020Project Manager, CSL Behring

2016 – 2019 Senior Consultant Project Management, Campana & Schott

Project Manager, Areva 2010 – 2016 2008 - 2010

Project Engineer, Brunel

Supported by

We operate globally

CSL is a leading global biotechnology company that develops and delivers innovative biotherapies that save lives, and help people with life-threatening medical conditions live full lives.

Manufacturing Sites

Marburg, Deutschland Bern, Schweiz Kankakee, USA Melbourne, Australien Wuhan, China

3,000

Employees

Core Products

- Coagulation factors
- Critical care products

1,500

Employees

Core Products

Immunoglobulins

1,600

Employees

Core Products

- Albumin
- Intermediate pastes

1,000

Employees

Core Products

- Coagulation factors
- Critical care
- Immunoglobulins

200

Employees

Core Products

- Immunoglobulins
- Albumin

CSL Behring Marburg at a glance

Initial capacity situation 2017

10-year forecast revealed bottleneck for freeze-dried production capacities within the next 5 years

100% utilization capacity is "critical"

80% utilization capacity should be the "healthy" planning capacity, incl. time for maintenance shut down

Initial steps of project & scenarios

- Internal project request was initiated
- Order for a pre project study (strategy) addressed to
 - Project Engineering and
 - Production
- Scenarios and solutions were developed that included
 - Green field solutions
 - External supplies
 - Upgrade/expand of existing filling and freeze-drying lines
 - Do nothing option

A favored version was selected

Favored scenario

- Highest benefit: expanding of existing filling line in Building H69
- Main reasons:
 - Existing modern filling line available
 - Space for 2 new lyophilizers available
 - Infrastructure available
 - Shortest time for realization of project
 - Best costs of all alternatives
 - Business case showed a payback period < 4 years (NPV)
 - Bulk hold times are too short for external supply via CMO
 - CMO filling & freeze-drying capacities limited esp. for vial sizes > 100ml & 250ml
 - Know-how for aseptic filling & freeze-drying and Engineering project management available on site

Supported by

Goals & user requirements

- Assure patient supply for the future!
- State of the art design:
 - Aseptic technology → e.g. fully automated vial loading system
 - Full GMP- & EHS-compliant
 - EU & US market approval
- Available space must fit for the future product demand
 - 2 new Lyos and
 - Potential for future expansion
 - Design for multi purpose products
- Construction work in parallel to running aseptic filling
 - Safe separation of the construction and aseptic production areas
 - Needed higher sterility assurance
 - Additional (re-) qualification and monitoring program to assure aseptic filling area

Supported by

Goals & user requirements

- One bulk batch per lyo-load
 - ~ 500 Liter drying capacity
- No human interventions in routine process
- High degree of process automation
- Integration of loading system to existing filling line
- Simulation of air flow in critical areas
 - CFD-Studies
- Shortest possible shut-downs for connecting new installations to filling line
 - Fully automated vial loading system
 - Utilities (HVAC, WFI, ...)
 - New lyophilizers
 - Synchronize routine with project shutdowns in order to minimize project specific shutdowns
 - Coordinate production schedule with Supply Chain Planning

CSL Behring
Blotherapies for Life"

Lastenheft

für das Projekt

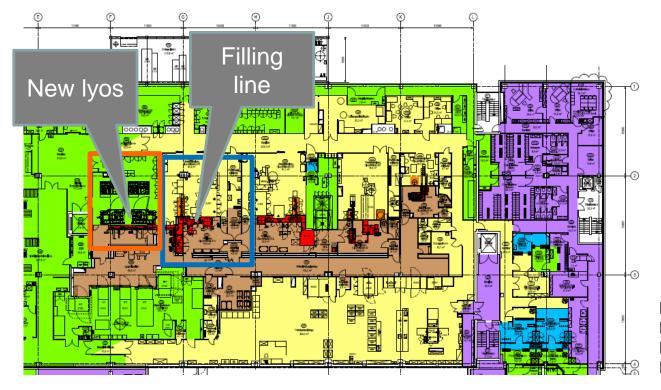
"Increase Capacity of Lyophilisation

2 Gefriertrocknungsanlagen

Jriertrocknungsanlagen MR-TFG-GFT01-GT035 MR-TFG-GFT01-GT036 Biotherapies for Life

Inhaltsverzeichnis Abkürzungen Einführung in das Projekt 3.1. Zielsetzung des Vorhabens 3.2. Projektumfeld 3.3. Wesentliche Aufgaben des Lieferanten 3.3.1. Allgemein Ansprechpartne Termine 3.3.4. Forderungen an das Angebot 3.4. Termine und Ansprechpartner für das Proiekt 3.4.1. Terminsituation 3.4.2. Ansprechpartner 3.5. Einbringung 3.6. Umgebungsbedingungen 4. Aufgabenstellungen – Anforderungen an die Anlage 4.1. Zu verarbeitende Produkte, Packmittel und Equipment 4.1.1. Produkt 4.1.2. Flaschen 4.13 Stonfen 4.1.4. Edelstahlrahmer 4.2. Prozessbeschreibung 4.2.1. Allgemeines 422 Prozessablau Überwachungen Datenerfassung Auslegung der Anlage 4.3. Technischer Aufbau 4.3.1. Allgemeine Anforderungen 4.3.2. Anforderungen Anlagentechnik 4.3.3. Anforderungen Automatisierung 4.4. Schnittstellen 4.4.1. Prozessschnittstellen 4.4.2. Medienschnittstellen 4.4. Schnittstellen 4.3.3. Anforderungen Automatisierung 4.3. Technischer Aufbau

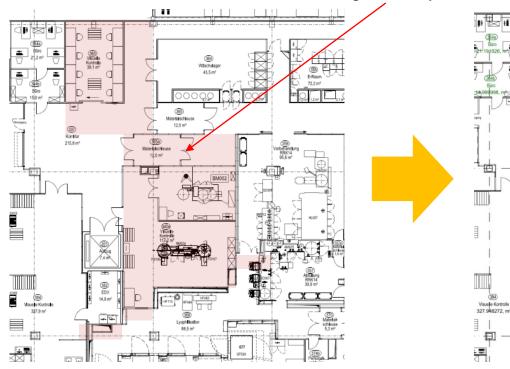
Initial situation, filling lines in building H69

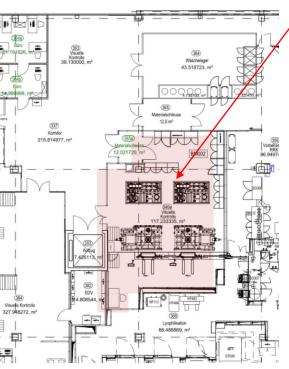


Final situation, filling lines in building H69

Project challenges

- No interruption of running production and synchronization with routine shut-downs
- Limited timelines
- Limited space
- Integration into an existing infrastructure
- Expanding of building infrastructure
- Load capacity of the floors & ceilings
- Relocation of rooms and air locks
- Unknown accuracy of existing building plans
- Integration and allocation of operators



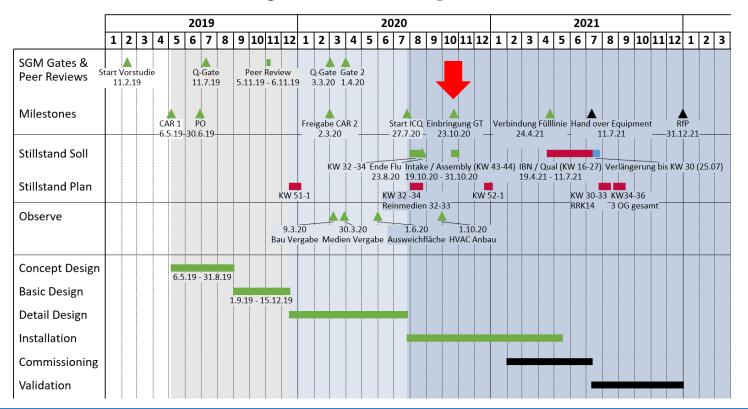


Transformation

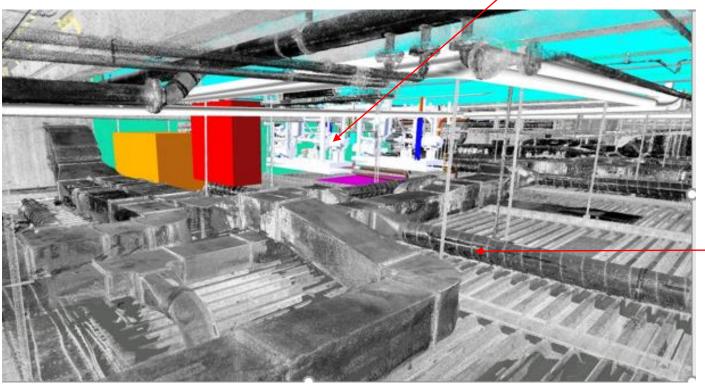
Existing room layout

Modified room layout

Layout Configuration

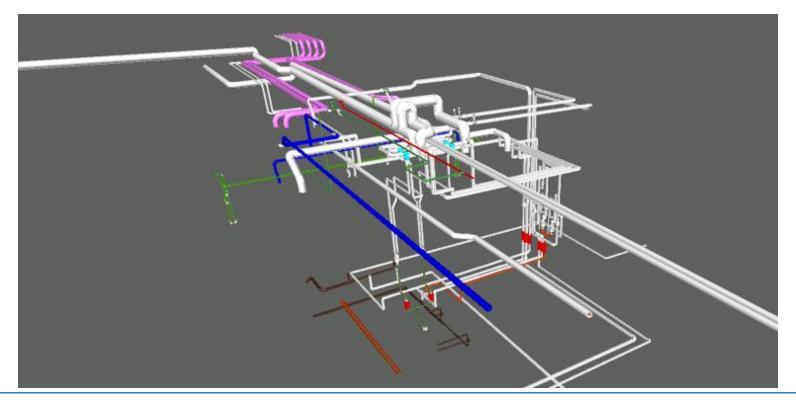


Milestone Freeze Dryer Transport

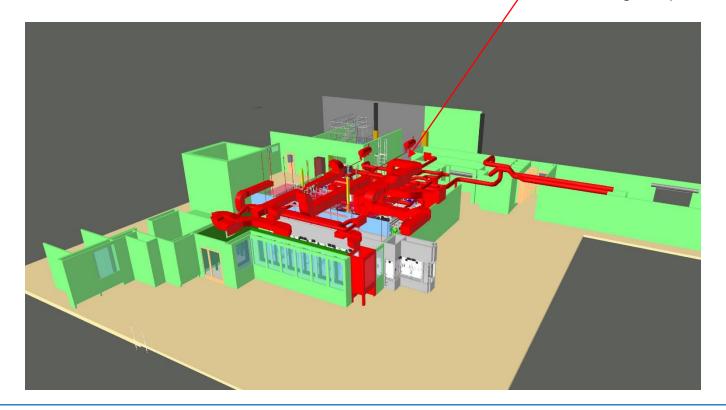


Detailed Design Layout

Detailed Design layout integration

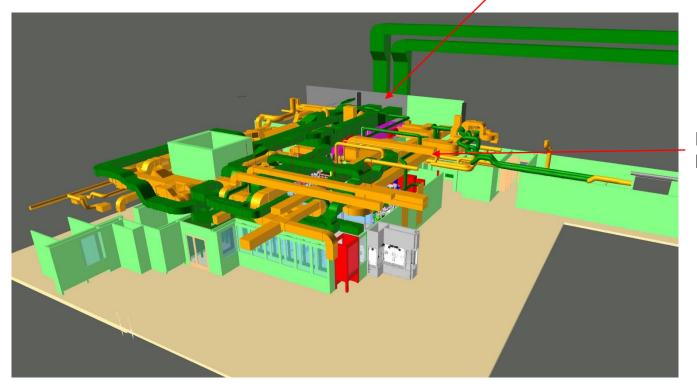

3D Scan

Existing & New Piping



HVAC Dismantling

Dismantling Scope

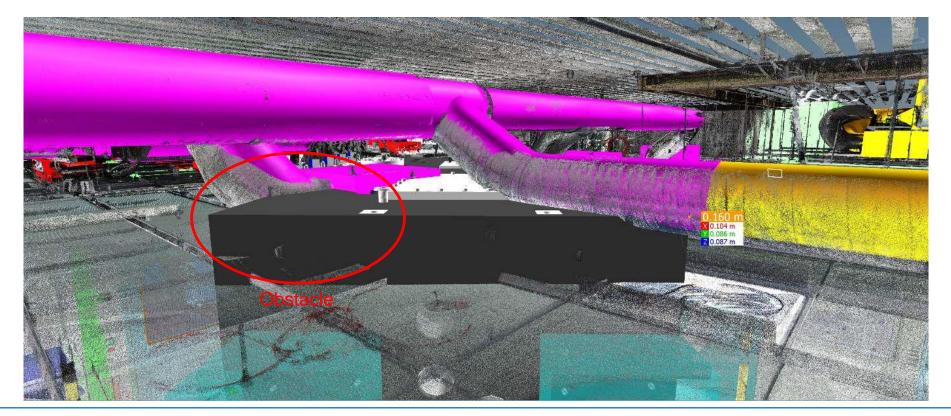


Existing & New HVAC

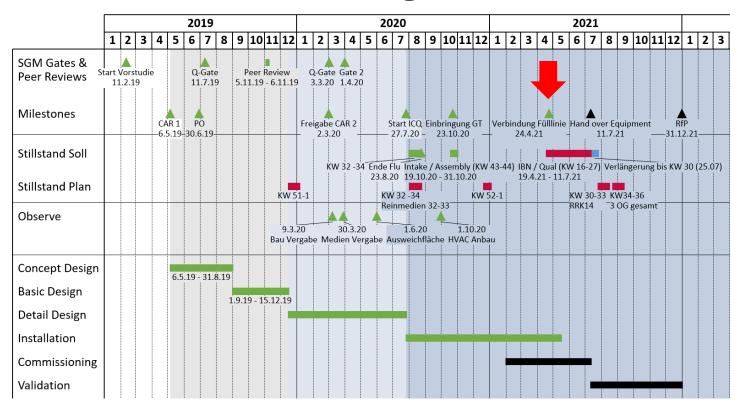
New Duct installation

Existing HVAC **Ducts**

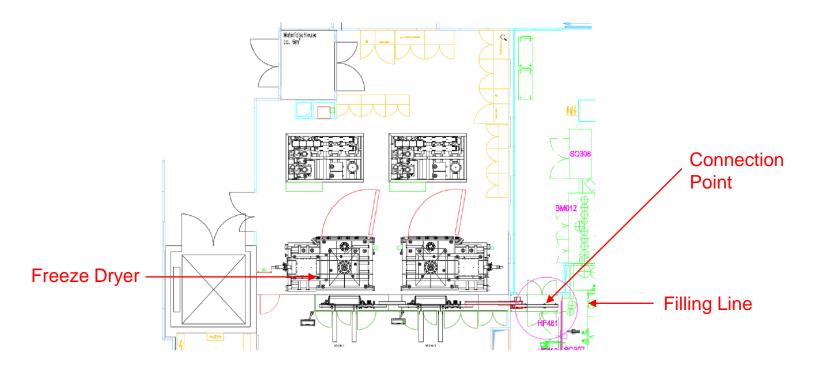
Layout & Feasibility Obstacles



Layout & Feasibility Obstacles

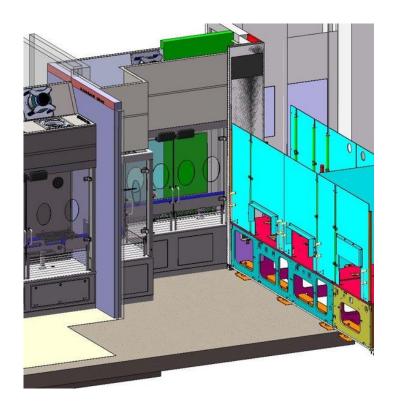


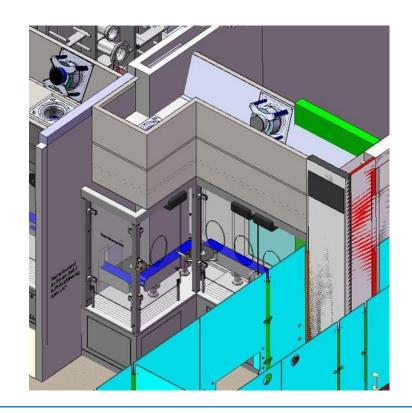
Milestone Connection Filling Line



Planning

Mock Up





Final Layout

Looking forward to your questions and discussion

